标签归档:深度学习

深度学习的概念是怎么来的

虽然深度学习似乎是最近几年刚兴起的名词,但它所基于的神经网络模型和用数据编程的核心思想已经被研究了数百年。自古以来,人类就一直渴望能从数据中分析出预知未来的窍门。实际上,数据分析正是大部分自然科学的本质,我们希望从日常的观测中提取规则,并找寻不确定性。

继续阅读

计算机视觉

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。计算机视觉是深度学习技术最早实现突破性成就的领域。随着2012年深度学习算法AlexNer赢得图像分类比赛冠军,深度学习开始受到学术界广泛的关注。

继续阅读

Bengio在深度学习领域的贡献是什么

Bengio的贡献主要在1990年代发明的Probabilistic models of sequences。他把神经网络和概率模型(例如隐马尔可夫模型)结合在一起,并和AT&T公司合作,用新技术识别手写的支票。现代深度学习技术中的语音识别也是这些概念的扩展。此外Bengio还于2000年还发表了划时代的论文“A Neural Probabilistic Language Model”,使用高维词向量来表征自然语言。他的之一是卷积神经网络。1980年代,LeCun发明了卷积神经网络,现在已经成为了机器学习领域的基础技术之一,也让深度学习效率更高。1980年代末期,Yan LeCun在多伦多大学和贝尔实验室工作期间,首次将卷积神经网络用于手写数字识别。今天,卷积神经网络已经成为了业界标准技术,广泛用于计算机视觉、语音识别、语音合成、图片合成,以及自然语言处理等学术方向,以及自动驾驶、医学图片识别、语音助手、信息过滤等工业应用方向
在ACM的公告中,Hinton最重要的贡献来自他1986年发明反向传播的论文“Learning Internal Representations by Error Propagation”,1983年发明的玻尔兹曼机(Boltzmann Machines代表贡献之一是卷积神经网络。1980年代,LeCun发明了卷积神经网络,现在已经成为了机器学习领域的基础技术之一,也让深度学习效率更高。1980年代末期,Yan LeCun在多伦多大学和贝尔实验室工作期间,首次将卷积神经网络用于手写数字识别。今天,卷积神经网络已经成为了业界标准技术,广泛用于计算机视觉、语音识别、语音合成、图片合成,以及自然语言处理等学术方向,以及现在已经成为了机器学习领域的基础技术之一,也让深度学习效率更高。1980年代末期今天,深度学习已经成为了人工智能技术领域最重要的技术之一。在最近数年中,计算机视觉、语音识别、自然语言处理和机器人取得的爆炸性进展都离不开深度学习。