Yago是由德国马普研究所于2007年开始的项目,针对当时的应用仅使用单一源背景知识的情况,建立了一个高质量、高覆盖的多源背景知识的知识库。前面介绍的专家构建的WordNet拥有极高的准确率的本体知识,但知识覆盖度仅限于一些常见的概念或实体;相比之下,维基百科蕴含丰富的实体知识,但维基百科多提供的概念的层次结构类似标签结构并不精确,直接用于本体构建并不适合。Yago的主要思路是将WordNet与维基百科二者的知识结合,即利用WordNet的本体知识补充维基百科中实体的上位词知识,从而获取大规模高质量、高覆盖的知识库。截至目前,Yago拥有超过1千万实体的1.2亿条事实知识,同时近些年也构建起了与其他知识库的链接关系

来源: 知识图谱的发展概述 | 机器之心